DOI
https://doi.org/10.47689/2181-3701-vol3-iss5-pp74-84Keywords
source language , target language , structural differences , morphological differences , semantics , pragmatics , translation model , lexicon , monolingual corpora , multilingual parallel corpora , natural language processingAbstract
This article discusses the fundamental concepts and terminology of modern machine translation. Each idea is analyzed in terms of its function and significance in the translation process. Definitions of terms are considered based on relevant translation examples in English, Japanese, Russian, Turkish, Spanish, Chinese, and French. Thus, the article examines the relationship between the source and target languages based on the primary translation factors, including structural, morphological, and semantic differences. In addition, the importance of concepts such as translation models, language vocabulary, monolingual and multilingual parallel corpora, and natural language processing is substantiated.
References
Alhaj, A. A. M. (2023). Lexical-Semantic Problems and Constrains Met in Translating Qur’anic Arabic-Specific words "Nafs نفس "into English: A Cross-lingual Perspective. In Technium Social Sciences Journal (Vol. 44, p. 1025). https://doi.org/10.47577/tssj.v44i1.9073
Imami, T. R., Mu’in, F., & Nasrullah, N. (2021). Linguistic and Cultural Problems in Translation. In Advances in Social Science, Education and Humanities Research/Advances in social science, education and humanities research. https://doi.org/10.2991/assehr.k.211021.024
Khurana, D., Koli, A., Khatter, K., & Singh, S. (2022). Natural language processing: state of the art, current trends and challenges. In Multimedia Tools and Applications (Vol. 82, Issue 3, p. 3713). Springer Science+Business Media. https://doi.org/10.1007/s11042-022-13428-4
Okur, B. C., TAKCI, H., & Akgül, Y. S. (2013). Rewriting Turkish texts written in English alphabet using Turkish alphabet (p. 1). https://doi.org/10.1109/siu.2013.6531394
Papineni, K. (2002). Machine Translation Evaluation: N-grams to the Rescue. In Language Resources and Evaluation. Springer Science+Business Media. http://www.lrec-conf.org/proceedings/lrec2002/pdf/347.pdf
Seraji, M. (2015). Morphosyntactic Corpora and Tools for Persian. http://www.diva-portal.org/smash/record.jsf?pid=diva2:800998
Timalsina, R. (2023). Overcoming Intercultural Obstacles in Translation. In Dristikon A Multidisciplinary Journal (Vol. 13, Issue 1, p. 156). https://doi.org/10.3126/dristikon.v13i1.56096
Koehn, P. (2010). Statistical Machine Translation. Cambridge University Press.
Vaswani, A., Shazeer, N., Parmar, N., et al. (2017). Attention Is All You Need. Advances in Neural Information Processing Systems.
Zakharov, Victor & Tao, Yuan. (2015). Разработка и использование параллельного корпуса русского и китайского языков. НТИ. Сер. 2. ИНФОРМ. ПРОЦЕССЫ И СИСТЕМЫ.
Joshi, P., Santy, S., Budhiraja, A., Bali, K., & Choudhury, M. (2020). The State and Fate of Linguistic Diversity and Inclusion in the NLP World. In arXiv (Cornell University). Cornell University. https://doi.org/10.48550/arxiv.2004.09095
Kakum, N., Laskar, S. R., Sambyo, K., & Pakray, P. (2023). Neural machine translation for limited resources English-Nyishi pair. In Sadhana (Vol. 48, Issue 4). Springer Science+Business Media. https://doi.org/10.1007/s12046-023-02308-8
Nekoto, W., Marivate, V., Matsila, T., Fasubaa, T., Fagbohungbe, T., Akinola, S. O., Muhammad, S. H., Kabenamualu, S., Osei, S., Sackey, F., Niyongabo, R. A., Macharm, R., Ogayo, P., Ahia, O., Berhe, M. M., Adeyemi, M., Mokgesi-Selinga, M., Okegbemi, L., Martinus, L., … Bashir, A. (2020). Participatory Research for Low-resourced Machine Translation: A Case Study in African Languages. https://doi.org/10.18653/v1/2020.findings-emnlp.195
Nigatu, H. H., Tonja, A. L., Rosman, B., Solorio, T., & Choudhury, M. (2024). The Zeno’s Paradox of `Low-Resource’ Languages. In arXiv (Cornell University). Cornell University. https://doi.org/10.48550/arxiv.2410.20817
Ranathunga, S., & Silva, N. de. (2022). Some Languages are More Equal than Others: Probing Deeper into the Linguistic Disparity in the NLP World. In arXiv (Cornell University). Cornell University. https://doi.org/10.48550/arxiv.2210.08523
Khurana, D., Koli, A., Khatter, K., & Singh, S. (2022). Natural language processing: state of the art, current trends and challenges. In Multimedia Tools and Applications (Vol. 82, Issue 3, p. 3713). Springer Science+Business Media. https://doi.org/10.1007/s11042-022-13428-4
Rajput, A. E. (2019). Natural Language Processing, Sentiment Analysis and Clinical Analytics. In arXiv (Cornell University). Cornell University. https://doi.org/10.48550/arxiv.1902.00679
Downloads
21 10Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Мохирух Хошимхужаева

This work is licensed under a Creative Commons Attribution 4.0 International License.











